You are not logged in Total: 7journals, 19,651articles Online
AccountAccount
Login / Register
Forgot Login?
 
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
Polls
About us
 
SearchSearch
 
Journal Site
Advanced Search
 

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.49  No.2 (2008)  >  pp.231-234

MATERIALS TRANSACTIONS
<<Previous article Vol.49  No.2 (2008)   pp.231 - 234 Next article>>

Ductile Fe-Based BMGs with High Glass Forming Ability and High Strength

Fengjuan Liu1), Quanwen Yang1), Shujie Pang1), Chaoli Ma1) and Tao Zhang1)
1) Department of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics

Fe-based bulk metallic glasses (BMGs) with high glass forming ability (GFA) and excellent mechanical properties were synthesized in Fe-Ni-Mo-P-C-B alloy system by copper mold casting. Results show that the glass forming ability of Fe74−xNixMo6P10C7.5B2.5 alloys increases first and then decreases as Ni content, x, increases from 0 to 11.1 at%, with its climax being reached at x is between 3.7 and 5.0. Analyses indicate that either ΔTx and ΔHendo or Trg and γ can not illustrate the GFA of obtained alloys solely. With increasing Ni element in Fe74−xNixMo6P10C7.5B2.5 alloys, the yield strength and Vicker’s mircrohardness decline, while the plasticity increases, which implies that enhancing plasticity by adjusting the composition of alloys is followed with the loss of some strength. Serrated flow characteristics on the compressive stress-strain curves is observed for Fe74−xNixMo6P10C7.5B2.5 as x=11.1 at%, which is considered to relate to its lowest glass transition temperature. These mechanical properties of BMGs are illustrated with bonding nature between the constituent elements.


Keyword:
metallic glasses, rapid-solidification, mechanical properties, magnetic property

Received: August 02, 2007
Accepted: November 22, 2007 , Published online: January 25, 2008
Copyright (c) 2008 The Japan Institute of Metals

PDFPDF file (J-STAGE)J-STAGEJ-STAGE


SPARC Japan

Terms of Use | Privacy Policy