You are not logged in Total: 7journals, 20,171articles Online
AccountAccount
Login / Register
Forgot Login?
 
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
Polls
About us
 
SearchSearch
 
Journal Site
Advanced Search
 

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.49  No.6 (2008)  >  pp.1303-1310

MATERIALS TRANSACTIONS
<<Previous article Vol.49  No.6 (2008)   pp.1303 - 1310 Next article>>

Effect of Zirconium Oxide Addition on Mechanical Properties in Ultrafine Grained Ferritic Stainless Steels

Masami Taguchi1), Hidehiko Sumitomo2), Ryo Ishibashi1) and Yasuhisa Aono1)
1) Materials Research Laboratory, Hitachi, Ltd.
2) Japan Ultra-High Temperature Materials Research Institute


Zirconium (Zr) and 12 mass% chromium containing ferritic stainless steels with Zr oxide dispersoids have been developed. In this study, the relationship between the process conditions and the metallurgical and mechanical properties were investigated. 12Cr-1Zr steel was consolidated with a grain size of about 1 μm by extrusion process of powder without mechanical alloying (MA). On the other hand, 12Cr-1Zr steels with MA process were shown to have a grain size of only about 0.36 μm or less. It was suggested that Zr atoms strongly reacts with gaseous impurities such as oxygen and carbon that were entrapped during MA. Based on TEM observations, Zr oxide and carbide preferentially precipitated on the grain boundaries which pin the grain boundary migration during the extrusion process. The developed steels follow the Hall-Petch relation and the slope is nearly identical to that of pure iron. Charpy impact values, at room temperature, of over 3 MJ/m2 up to tensile strength of 1500 MPa were obtained which is three times higher than those of conventional ferritic stainless steels or PH-stainless steels.


Keyword:
mechanical alloying, ferritic stainless steel, zirconium oxide, grain refinement, tensile strength, Charpy impact test

Received: January 28, 2008
Accepted: April 01, 2008 , Published online: May 25, 2008
Copyright (c) 2008 The Japan Institute of Metals

PDFPDF file (J-STAGE)J-STAGEJ-STAGE


SPARC Japan

Terms of Use | Privacy Policy