You are not logged in Total: 7journals, 20,272articles Online
AccountAccount
Login / Register
Forgot Login?
 
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
Polls
About us
 
SearchSearch
 
Journal Site
Advanced Search
 

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.42  No.8 (2001)  >  pp.1647-1652

MATERIALS TRANSACTIONS
<<Previous article Vol.42  No.8 (2001)   pp.1647 - 1652 Next article>>

Impedance Spectroscopy Studies of Nanosturctured ZnO Based Varistor Materials

Raghavan Nadar Viswanath1) and Sinna Nadar Ramasamy1)
1) Department of Nuclear Physics, University of Madras, School of Physical Sciences

Varistor material with 96 mol%ZnO+4 mol% dopants in oxide form of Bi, Co, Sb, B, Cu and Sn in nanostructured form has been synthesized using colloidal suspension and centrifugal separation method. The synthesized powder sample specimen was compacted into a pellet and sintered in air at 1073 K for 3 h to get a bulk density of 96%. In situ impedance spectroscopy (IS) studies have been carried out for the sintered nanostructured specimen at various temperatures in oxygen and nitrogen atmosphere. The impedance spectroscopy results below 423 K show that the specimen contains three activation energy regions which are attributed to (i) pure ZnO core grain (ii) aliovalent cation diffused layer around the pure ZnO core and (iii) grain boundary (GB). The specimen changes its conducting nature at and above 423 K . The a.c. conductivity was measured at fixed frequencies (106 Hz and 102 Hz) as a function of temperature. The conductivity of bulk grain and grain boundary regions increases with the increase of temperature. Eventhough the conductivity value of bulk grain and grain boundary regions increases with temperature, the rate of change of conductivity in grain boundary region is larger than that in bulk grain. The GB conductivity becomes almost equal to that of bulk grains at high temperatures. The change of grain boundary conductivity with temperature is faster in N2 atmosphere compared to the change in O2 atmosphere. Due to this dominant grain boundary conductivity, the varistor action of the sample is lost at high temperatures in nitrogen atmosphere (air).


Keyword:
zinc oxide, varistor material and impedance spectroscopy

Received: February 19, 2001
Accepted: May 10, 2001 , Published online: September 06, 2005
Copyright (c) 2005 The Japan Institute of Metals

PDFPDF file (J-STAGE)J-STAGEJ-STAGE


SPARC Japan

Terms of Use | Privacy Policy