You are not logged in Total: 7journals, 20,388articles Online
Login / Register
Forgot Login?
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
About us
Journal Site
Advanced Search

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.46  No.6 (2005)  >  pp.1278-1287

<<Previous article Vol.46  No.6 (2005)   pp.1278 - 1287 Next article>>

Characterisation of Quasicrystalline Particles in an Isothermally Aged Al–10Mg–0.5Ag (mass%) Alloy

Masahiro Kubota1), Jian Feng Nie1) and Barry C. Muddle1)
1) School of Physics and Materials Engineering, P.O. Box 69M, Monash University

The quasicrystalline structure found in the isothermally aged microstructure in an Al–10Mg–0.5Ag (mass%) alloy after solution treated, water quenched and then aged during the time between 20 and 40 min at 240°C has been characterised using transmission electron microscopy, electron microdiffraction and energy dispersive x-ray spectroscopy. The morphology of the quasicrystalline precipitate particles is rhombohedral in shape and those precipitate particles are homogeneously nucleated, and finely and uniformly dispersed in the matrix. The orientation relationship between the quasicrystalline phase and the α-Al matrix is as follows; i5||⟨011⟩α and i3||⟨111⟩α. The quasilattice constant aR of the icosahedral quasicrystalline phase is estimated to be 0.505±0.01 nm from the present 5-fold electron microdiffraction patterns. The lattice parameter ac of the corresponding crystalline cubic approximant is thus calculated to be 1.390±0.028 nm. This is in good agreement with the lattice parameter of the crystalline T phase (Mg32(Al,Ag)49, a=1.416 nm). The morphology of the quasicrystalline precipitate particle is consistent with that predicted from the intersection point group \bar3, which was defined by symmetry elements common to the two lattices in the observed orientation relationship. The quasicrystalline particles contain elements of Al, Mg and Ag. The quasicrystalline precipitate particles, which are the metastable phase, appear to be the primary strengthening phase in the Al–10Mg–0.5Ag (mass%) alloy aged at 240°C.

quasicrystalline phase, aluminium–magnesium–silver, microstuctural characterization, precipitation, energy dispersive x-ray spectroscopy analysis

Received: January 26, 2005
Accepted: April 27, 2005 , Published online: October 18, 2005
Copyright (c) 2005 The Japan Institute of Metals



Terms of Use | Privacy Policy