You are not logged in Total: 7journals, 20,727articles Online
AccountAccount
Login / Register
Forgot Login?
 
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
Polls
About us
 
SearchSearch
 
Journal Site
Advanced Search
 

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.43  No.4 (2002)  >  pp.633-637

MATERIALS TRANSACTIONS
<<Previous article Vol.43  No.4 (2002)   pp.633 - 637 Next article>>

The Effect of 800 MeV Proton Irradiation on the Mechanical Properties of Tungsten

Stuart Andrew Maloy1), Michael Richard James1), Walter Sommer, jr.1), Gordon Jesse Willcutt, jr.2), Manuel Lopez3) and Tobias James Romero3)
1) AAA-TDO, MS H809, Los Alamos National Laboratory
2) D-10, MS K575, Los Alamos National Laboratory
3) NMT-11, MS G742, Los Alamos National Laboratory


For the Accelerator Production of Tritium (APT) and the Accelerator Driven Transmutation Facility (ADTF), tungsten is being proposed as a target material to produce neutrons. Previous work has shown that the mechanical properties of tungsten are degraded from irradiation in a fission neutron flux but little work has been performed on the irradiation of tungsten in a high energy proton beam. In this study, tungsten rods were irradiated at the 800 MeV Los Alamos Neutron Science Center (LANSCE) proton accelerator for six months. To avoid corrosion during irradiation, the rods were slip fit with thin (0.25 mm thick) 304L stainless steel (SS) or (0.125 mm thick) annealed Alloy 718 tubing. After irradiation to a maximum dose in the tungsten of 23.3 dpa at Tirr=50–270°C, the clad rods were opened in the hot cells and the tungsten was removed. The tungsten was then sliced into short compression specimens (∼ 3 mm long). Hardness tests and compression tests were performed on the tungsten rods to assess the effect of irradiation on their mechanical properties. Results show an increase in hardness with dose and irradiation temperature and an increase in yield stress with dose.


Keyword:
tungsten, irradiation, mechanical properties, proton

Received: October 17, 2001
Accepted: January 18, 2002 , Published online: September 06, 2005
Copyright (c) 2005 The Japan Institute of Metals

PDFPDF file (J-STAGE)J-STAGEJ-STAGE


SPARC Japan

Terms of Use | Privacy Policy