You are not logged in Total: 7journals, 20,314articles Online
AccountAccount
Login / Register
Forgot Login?
 
Main menuMain menu
What's new
Journal list
Visiting ranking
Phrase ranking
Polls
About us
 
SearchSearch
 
Journal Site
Advanced Search
 

Home  >  Journal list  >  MATERIALS TRANSACTIONS  >  Vol.42  No.8 (2001)  >  pp.1535-1539

MATERIALS TRANSACTIONS
<<Previous article Vol.42  No.8 (2001)   pp.1535 - 1539 Next article>>

Soft Magnetic Properties of Nanocrystalline Fe-Nb-B-P Alloys Produced in the Atmosphere by Melt-Spinning Method

Akinori Kojima1), Satoru Ito1), Akihiro Makino2) and Akihisa Inoue3)
1) Magnetic Application Dept. Alps Electric Co., Ltd.
2) Department of Machine Intelligence and System Engineering, Akita Prefectural University
3) Institute for Materials Research, Tohoku University


The soft magnetic properties of nanocrystalline Fe–Nb–B and Fe–Nb–B–P alloys produced in the atmosphere by a melt-spinning method have been investigated. The nanocrystalline Fe100−xyNbxBy ternary alloys show good soft magnetic properties, relative permeability (μ) above 35000 at a frequency of 1 kHz and coercive force (Hc) below 5.0 Am−1, as well as high saturation magnetic induction (Bs) above 1.55 T in the compositional range of x=6.5–6.7 and y=9.3–10.0 at%. The soft magnetic properties of the nanocrystalline Fe–Nb–B ternary alloys are improved by 0.5–1.5 at% substitution of P for B, without decreasing their Bs. The magnetostriction (λs) value increases and the mean grain size of bcc-Fe phase (D) decreases slightly by substitution of P for B . The nanocrystalline Fe84Nb6.5B9P0.5 and Fe84Nb6.5B8.5P1 alloys show good soft magnetic properties, μ of 46000–47000 at a frequency of 1 kHz, Hc of 3.6–3.9 Am−1 and the core loss of the 0.09 Wkg−1 at maximum induction (Bm) of 1.33 T and a frequency of 50 Hz as well as high Bs of 1.60 T, suggesting that these nanocrystalline Fe–Nb–B–P alloys are suitable for a core materials for pole transformers.


Keyword:
high saturation magnetic induction, low core loss, nanocrystalline, crystallization, iron-niobium-boron-phosphorus alloy

Received: March 02, 2001
Accepted: June 18, 2001 , Published online: September 06, 2005
Copyright (c) 2005 The Japan Institute of Metals

PDFPDF file (J-STAGE)J-STAGEJ-STAGE


SPARC Japan

Terms of Use | Privacy Policy